Exercise 32

Solve the inhomogeneous partial differential equation

$$
\begin{aligned}
u_{x t} & =-\omega \sin \omega t, \quad t>0, \\
u(x, 0) & =x, \quad u(0, t)=0 .
\end{aligned}
$$

Solution

Solution by Partial Integration

Integrate both sides of the PDE partially with respect to t to get rid of the t-derivative on u.

$$
\left.\int^{t} u_{x t}\right|_{t=s} d s=\int^{t}-\omega \sin \omega s d s+f(x),
$$

where f is an arbitrary function.

$$
u_{x}=\cos \omega t+f(x)
$$

To eliminate the x-derivative, integrate both sides partially with respect to x.

$$
\left.\int^{x} u_{x}\right|_{x=r} d r=\int^{x}[\cos \omega t+f(r)] d r+g(t),
$$

where g is another arbitrary function.

$$
u(x, t)=x \cos \omega t+F(x)+g(t),
$$

where F is another arbitrary function. To determine them, we use the provided initial and boundary conditions.

$$
\begin{aligned}
u(x, 0) & =x+F(x)+g(0)=x \quad \rightarrow \quad F(x)+g(0)=0 \\
u(0, t) & =F(0)+g(t)=0
\end{aligned}
$$

Set $F(x)=0$ and $g(t)=0$ to satisfy the conditions. Therefore,

$$
u(x, t)=x \cos \omega t
$$

Solution by the Laplace Transform

Since we're given an initial condition and $t>0$, we can solve this PDE with the Laplace transform. It is defined as

$$
\mathcal{L}\{u(x, t)\}=\bar{u}(x, s)=\int_{0}^{t} e^{-s t} u(x, t) d t,
$$

which means the derivatives of u with respect to x and t transform as follows.

$$
\begin{aligned}
\mathcal{L}\left\{\frac{\partial^{n} u}{\partial x^{n}}\right\} & =\frac{d^{n} \bar{u}}{d x^{n}} \\
\mathcal{L}\left\{\frac{\partial u}{\partial t}\right\} & =s \bar{u}(x, s)-u(x, 0)
\end{aligned}
$$

Take the Laplace transform of both sides of the PDE.

$$
\mathcal{L}\left\{u_{x t}\right\}=\mathcal{L}\{-\omega \sin \omega t\}
$$

The Laplace transform is a linear operator.

$$
\mathcal{L}\left\{u_{x t}\right\}=-\omega \mathcal{L}\{\sin \omega t\}
$$

Transform the derivative on the left with the relations above.

$$
\frac{d}{d x}[\bar{u}(x, s)-u(x, 0)]=-\omega \frac{\omega}{s^{2}+\omega^{2}}
$$

Substitute the initial condition, $u(x, 0)=x$.

$$
\frac{d}{d x}[\bar{u}(x, s)-x]=-\frac{\omega^{2}}{s^{2}+\omega^{2}}
$$

Evaluate the derivative on the left side.

$$
\frac{d \bar{u}}{d x}-1=-\frac{\omega^{2}}{s^{2}+\omega^{2}}
$$

Solve for $d \bar{u} / d x$.

$$
\frac{d \bar{u}}{d x}=\frac{s}{s^{2}+\omega^{2}}
$$

The PDE has thus been reduced to an ODE, which is first-order and can be solved by integrating both sides with respect to x.

$$
\bar{u}(x, s)=\frac{s}{s^{2}+\omega^{2}} x+C
$$

To determine the constant C, we use the boundary condition at $x=0, u(0, t)=0$. Take the Laplace transform of both sides of it.

$$
\begin{aligned}
\mathcal{L}\{u(0, t)\} & =\mathcal{L}\{0\} \\
\bar{u}(0, s) & =0
\end{aligned}
$$

Plugging in $x=0$ into the formula for \bar{u} and using the boundary condition, we have

$$
\bar{u}(0, s)=C=0 .
$$

Thus,

$$
\bar{u}(x, s)=\frac{s}{s^{2}+\omega^{2}} x .
$$

All that's left to do now is to take the inverse Laplace transform of this to get $u(x, t)$.

$$
\begin{aligned}
u(x, t)=\mathcal{L}^{-1}\{\bar{u}(x, s)\} & =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+\omega^{2}} x\right\} \\
& =x \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+\omega^{2}}\right\}
\end{aligned}
$$

Therefore,

$$
u(x, t)=x \cos \omega t .
$$

